Buffer Gas Cooling

A tool for trapping neutral atoms

Bonna Newman

MIT/Harvard Center for Ultracold Atoms

April 8, 2008

LBNL

EETD Seminar

Many Thanks

Fellow Grad Students:

Cort Johnson

Nathan Brahms

Advisers:

Outline

Background

- Trapping and cooling
- Laser cooling: applications and limitations

Buffer gas cooling: Techniques and applications

- Advantages over laser cooling
- Basic physical principles
- Technical challenges and solutions
- □ Trapping 1µ_B: Li, Cu, Ag
- □ Future Experiments: Non-S state atoms and further cooling

Why am I here today?

- Transition to sustainable energy science
- □ Activities of PV@MIT

Trapped Atom Science

- Study quantum behavior near absolute zero temperature
- Precision measurement
 - Atomic clocks
- Quantum information
 - Manipulate quantum states for computing and secure communication
- Simulate solid state systems
 - \Box High T_C superconductors

Trapping and Cooling

Trapping requires cooling!

Laser Cooling: A Common Approach

Photon Scattering

Must be able to scatter many photons per atom

Ideally your atom is a two level system: After emission your atom is back where it started, waiting to be cooled further.

Laser Cooling Limitations

Complex structure makes laser cooling a challenge for most atomic species

Buffer Gas Cooling

Not dependent on internal states.

You can cool all kinds of species (including molecules)!

But can you trap everything?

Magnetic Trapping

Hydrogen Hyperfine Levels

Atom	$\sim \mu_{atom} (\mu_B)$	
H, Li, Na Cu, Ag, Au	1	
⁴ He*	2	
N, Bi, Pr	3	
Ni	5	
Cr, Fe, Co	6	
Но	9	
Dy	10	

Magnetic Trapping

$$\eta = \frac{\mu_{atom} B_{trap}}{k_B T} > 1 \qquad \frac{\mu_B}{k_B} = 0.67 \frac{K}{T}$$

Atom Trapper's Periodic Table

Basics of Buffer Gas Cooling

 $T \approx 1000K$

 $T \approx 100 \, mK$

3He buffer gas

• Paramagnetic Atoms

Thermalization \sim 100 collisions in 300 μs

$$n_{BG} = 10^{16} \text{ cm}^{-3}$$

Trapped Atoms!

Limits of Buffer Gas Cooling

Although trapped...

- Thermally connected to walls by buffer gas
- Atoms can undergo collisions to put them in an untrapped state

Elastic vs. Inelastic Collisions

Buffer Gas Cooling and Trapping Requirements

- 1. Cold non-magnetic buffer gas
 - ✓ He thermalized by dilution refrigerator (~100mK)
- 2. Atomic/Molecular source
 - ✓ Ablation, discharge, gas beam
- 3. Large magnetic field.
 - ✓ 4T superconducting magnet
 - ✓ 2.7K trap depth $\leftrightarrow \eta \sim 5-10$
- 4. Method to remove buffer gas
 - ✓ Fast cryogenic valve

Buffer Gas Loading Scheme

Ablate target ~1000 K

Thermalize and further cooling ~150K

Open valve to remove buffer gas

Study atoms

Further evaporative cooling

Dilution __ refrigerator mixing chamber

Valve chamber

Experimental cell with pump out _ and trapping regions

Pulley box for pull line

Heat links

Absorption Spectroscopy

Li Trapping: $1\mu_B$ S-state atom

Demonstrated first buffer gas cooling and trapping of 1 μ_B atoms!

The Noble Metals

	Cu	Ag	Au
Ground state config.	3d ¹⁰ 4s	4d ¹⁰ 5s	4f ¹⁴ 5d ¹⁰ 6s
Z	29	47	79
λ(nm)	327	327	243

- □ All are hydrogen like ²S_{1/2} ground states.
- Atomic masses are more favorable than Li for trapping.

Trapped Ag, Cu

Probe ${}^{2}S_{1/2} \rightarrow {}^{2}P_{3/2}$ (328 nm)

Ag 1/e lifetime ~ 2.5 s

Probe ${}^{2}S_{1/2} \rightarrow {}^{2}P_{3/2}$ (325 nm)

Cu 1/e lifetime ~ 5 s

Elastic vs. Inelastic Collisions

S-state vs. non-S-state

Elastic to Inelastic Ratio

Inelastic = trap loss Elastic = thermalization

$$\tau_d = \frac{1}{n\sigma_{el}v_{th}}$$

$$\gamma = \frac{\sigma_{el}}{\sigma_{in}}$$

 $\gamma > 10^4$ for possible trapping

Ratio is an indicator of anisotropy.

Or how S-like a many-electron atom is!

Ag Trap Lifetime vs. τ_d

Temperature Dependence

$$\gamma_{Ag}, \gamma_{Cu} > 10^6$$

S-state behavior confirmed

$$\gamma_{Ag} \sim T^6$$

Not expected

Brahms, N., et. al. -- submitted.

Conclusion

Successfully trapped 1µ_B Li, Cu, Ag using buffer gas cooling

- 1. Lithium
 - \cdot >10¹² atoms trapped at T ~ 150 mK
 - Lifetimes ~ 200 seconds
- 2. Cu, Ag
 - $>10^{12}$ atoms trapped at T < 500 mK
 - Lifetimes ~ 5 s
 - Anomalous Ag inelastic collision dependence on temperature

Removal of the Buffer Gas

- Thermal isolation
- Lengthen trap lifetime
- Study intra-atomic collisions
- Evaporative cooling to possible quantum degeneracy

Rare Earths

Non S-state -- but repressed anisotropy¹
High magnetic moments

¹Hancox, C., et. al. *Nature*, **431**, 281 (2004).

Future Experiments

Intra-species collisions

Why am I here today?

Figure 1.1 Energy Overview

supply.

Energy information Administration / Annual Energy Review 2008

PV @ MIT – Buonassisi Lab

All things PV!

Near Term

Crystalline silicon

- Increase efficiency
 - Defect engineering
 - Device architecture
- Processing and manufacturing

Images courtesy of Tonio Buonassisi.

Intermediate Term

Thin Films

- Novel materials
- Abundant

Thin Silicon Project

Femtosecond structured silicon

Silicon turned black!

C. H. Crouch, et. al. J. App. Phys. A, 79, 1635-1641 (2004).

Thin (Black) Silicon

Use tools from defect engineering to figure out why this is happening!

Can we use if for PV devices??

More Information

For more information about photovoltaic and energy research at MIT

http://pv.mit.edu

http://web.mit.edu/mitei